论文标题

使用结构化模型矩阵和$ 2D $ fast Fourier变换的大规模重点倒置重点反转的快速方法

A fast methodology for large-scale focusing inversion of gravity and magnetic data using the structured model matrix and the $2D$ fast Fourier transform

论文作者

Renaut, Rosemary A., Hogue, Jarom D., Vatankhah, Saeed

论文摘要

讨论了从均匀网格上的表面测量数据中恢复稀疏地下结构的潜在现场数据的重点。对于均匀的网格,模型灵敏度矩阵表现出块toeplitz toeplitz块结构,该结构是通过地下每个深度层的块。然后,通过嵌入循环矩阵中,使用快速的二维傅立叶变换实现了具有灵敏度矩阵或其转置的所有正向操作。模拟表明,这种快速反转算法可以在标准台式计算机上实现,并具有足够的存储器,以存储量的数量,最高为$ n \约100万美元。使用Golub Kahan BiDiagonalization或随机的奇异值分解算法来求解聚焦反转算法中产生的方程式的线性系统,其中使用快速傅立叶变换实现了所有带有灵敏度矩阵的矩阵操作。对于线性系统解决方案采用的投影子空间的大小,这两种算法对于大规模问题的效率形成了鲜明对比。提出的结果证实了早期的研究,即重力数据反转的随机算法是首选的,并且对于大小约$ m/8 $的投影空间来说,对于$ m $ $ $ m $的数据集就足以使用大约$ m/8 $的投影空间。相比之下,Golub Kahan Bidiagonalization为磁数据集的反转提供了更有效的实现,并且再次使用大约$ M/8 $的大小的投影空间也足以实现。此外,当$ m $大,$ m \ 50000 $时,使用尺寸$ m/20 $的投影空间足以重建$ n \ 100万$。模拟支持了所提供的结论,并在加拿大曼尼托巴省的Wuskwatim Lake地区获得的实用磁数据集进行了验证。

Focusing inversion of potential field data for the recovery of sparse subsurface structures from surface measurement data on a uniform grid is discussed. For the uniform grid the model sensitivity matrices exhibit block Toeplitz Toeplitz block structure, by blocks for each depth layer of the subsurface. Then, through embedding in circulant matrices, all forward operations with the sensitivity matrix, or its transpose, are realized using the fast two dimensional Fourier transform. Simulations demonstrate that this fast inversion algorithm can be implemented on standard desktop computers with sufficient memory for storage of volumes up to size $n \approx 1M$. The linear systems of equations arising in the focusing inversion algorithm are solved using either Golub Kahan bidiagonalization or randomized singular value decomposition algorithms in which all matrix operations with the sensitivity matrix are implemented using the fast Fourier transform. These two algorithms are contrasted for efficiency for large-scale problems with respect to the sizes of the projected subspaces adopted for the solutions of the linear systems. The presented results confirm earlier studies that the randomized algorithms are to be preferred for the inversion of gravity data, and that it is sufficient to use projected spaces of size approximately $m/8$, for data sets of size $m$. In contrast, the Golub Kahan bidiagonalization leads to more efficient implementations for the inversion of magnetic data sets, and it is again sufficient to use projected spaces of size approximately $m/8$. Moreover, it is sufficient to use projected spaces of size $m/20$ when $m$ is large, $m \approx 50000$, to reconstruct volumes with $n \approx 1M$. Simulations support the presented conclusions and are verified on the inversion of a practical magnetic data set that is obtained over the Wuskwatim Lake region in Manitoba, Canada.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源