论文标题

在这些疾病普遍存在的情况下,是否涉及某些疾病的论文?将Twitter数据用作社交空间传感器的提议

Are papers addressing certain diseases perceived where these diseases are prevalent? The proposal to use Twitter data as social-spatial sensors

论文作者

Bornmann, Lutz, Haunschild, Robin, Patel, Vanash M.

论文摘要

我们建议将Twitter数据用作社会空间传感器。这项研究探讨了一个问题,该研究论文是否受到疾病特别关注的地区(全球)的人们感知的。由于(某些)Twitter数据包含位置信息,因此可以空间绘制Twitter用户参考某些论文的活动(例如,处理结核病)。由此产生的地图揭示了Twitter上的重型活动是否与大量患有某些疾病的人相关。在这项研究中,我们专注于结核病,人类免疫缺陷病毒(HIV)和疟疾,因为世界卫生组织将这些疾病排名为单一感染剂在全球范围内死亡的三大原因。社会空间Twitter图(以及另外执行的回归模型)的结果揭示了所提出的传感器方法的有用性。人们对疾病特别关注的地区的人们如何看待有关疾病的研究论文的印象。我们的研究表明,除了简单的推文计数之外,使用Twitter数据用于研究评估目的的有希望的方法。

We propose to use Twitter data as social-spatial sensors. This study deals with the question whether research papers on certain diseases are perceived by people in regions (worldwide) that are especially concerned by the diseases. Since (some) Twitter data contain location information, it is possible to spatially map the activity of Twitter users referring to certain papers (e.g., dealing with tuberculosis). The resulting maps reveal whether heavy activity on Twitter is correlated with large numbers of people having certain diseases. In this study, we focus on tuberculosis, human immunodeficiency virus (HIV), and malaria, since the World Health Organization ranks these diseases as the top three causes of death worldwide by a single infectious agent. The results of the social-spatial Twitter maps (and additionally performed regression models) reveal the usefulness of the proposed sensor approach. One receives an impression of how research papers on the diseases have been perceived by people in regions that are especially concerned by the diseases. Our study demonstrates a promising approach for using Twitter data for research evaluation purposes beyond simple counting of tweets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源