论文标题

半纤维理性半群的动力学和几何形状

The Dynamics and Geometry of Semi-Hyperbolic Rational Semigroups

论文作者

Atnip, Jason, Sumi, Hiroki, Urbański, Mariusz

论文摘要

我们研究了作用在Riemann Sphere上的一大批有限生成的合理图的半含量的半纤维半群的偏斜产物动力学,该图既概括了单个复杂可变复杂/霍旋形态动态的单个合理图的迭代理论),又概述了可计数的(可计数性字母综合式迭代迭代系统)的理论(CIFS)。我们通过开发良好家庭的概念来为这种动力学系统和几何潜力构建热力学形式主义,这些概念扩展到我们高度断开的偏斜产品相位空间,这是由于Rivera-letelier和przytycki引起的强大概念,以及$ k(v)$ k(v)$ sets $ beats $ k(v)$ sets natker and the natker and the nep natker and the nep natker and the nep natker and。我们利用技术来证明广泛的Hölder潜力的平衡状态的存在和独特性,以及伴随的统计定律:中心限制定理,迭代对数定律和相关性的指数衰减。我们投入了很多空间和努力来控制(非循环)关键点,这是一个臭名昭著的挑战,即使对于单个理性功能也是如此。更多的发电机添加了定性的新挑战。除了动力学外,我们还采用动力学方法,还可以研究与此类系统,尤其是通过平衡状态相关的错综复杂的朱莉娅集的细分几何特性的研究,我们对lyapunov指数进行了多重分析分析。我们使用了最后两位作者引入的良好开放式条件(NOSC),并应用了我们的新技术来解决理性半群理论中的长期存在问题,证明对于我们的半群,每个光纤朱利娅套装的Hausdorff尺寸都比Endigria集体的Hausdorff Dimension julia set的Hausdorff尺寸严格小。

We study skew-product dynamics for a large class of finitely-generated semi--hyperbolic semigroups of rational maps acting on the Riemann sphere, which generalizes both the theory of iteration of a single rational map of a single complex variable complex/holomorphic dynamics) and the theory of countable alphabet conformal iterated function systems (CIFSs). We construct the thermodynamic formalism for such dynamical systems and geometric potentials by developing the notion of nice families that extend to the case of our highly disconnected skew product phase space the powerful notion of nice sets due to Rivera--Letelier and Przytycki, and the allied earlier notion of $K(V)$ sets due to Denker and the last named author. We leverage out techniques to prove the existence and uniqueness of equilibrium states for a wide class of Hölder potentials, and concomitant statistical laws: central limit theorem, law of iterated logarithm, and exponential decay of correlations. We devote lots of space and effort to control (non-recurrent) critical points which is a notoriously challenging task even for a single rational function; more generators add qualitatively new challenges. Beyond dynamics, but still with dynamical methods, we advance the study of finer fractal geometrical properties of the intricate Julia sets associated to such systems and, in particular, via equilibrium states, we perform a multifractal analysis of Lyapunov exponents. We use the Nice Open Set Condition (NOSC) introduced by the last two authors, and apply our new techniques to settle a long-standing problem in the theory of rational semigroups by proving that for our class of semigroups the Hausdorff dimension of each fiber Julia set is strictly smaller than the Hausdorff dimension of the global Julia set of the semigroup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源