论文标题

几乎肯莫图(Kenmotsu

Almost Kenmotsu manifolds admitting certain vector fields

论文作者

Dey, Dibakar, Majhi, Pradip

论文摘要

在本文中,我们表征了几乎肯莫图的流形,该歧管承认霍明型平面共形矢量(HPCV)字段。我们已经表明,如果几乎是kenmotsu歧管$ m^{2n+1} $接纳一个非零的hpcv field $ v $,以便$ ϕv = 0 $,则$ m^{2n+1} $是本地的几乎是kaehler歧管的扭曲产物。作为推论,我们几乎可以获得几乎是Kenmotsu歧管的分类,即kenmotsu歧管,也证明D的整体流形完全是$ M^{2n+1} $的脐带submanifolds。此外,我们证明,如果几乎具有正常$ξ$ -Sectional curvature的肯莫茨流形承认非零的HPCV Field $ V $,那么$ M^{2n+1} $是本地扭曲的产品,几乎是Kaehler歧管,并且是一个空地的开放间隔或范围。此外,A $(k,μ)'$ - 几乎是Kenmotsu歧管,承认hpcv field $ v $,以至于$ ϕv = 0 $是本地等距到$ \ mathbb {h}^{n+1}(-4)\ times \ times \ times \ mathbb {r}^n $或$ v $ a $ h'$ hh'$ h'$ h'$ h'最后,提出了一个示例。

In the present paper, we characterize almost Kenmotsu manifolds admitting holomorphically planar conformal vector (HPCV) fields. We have shown that if an almost Kenmotsu manifold $M^{2n+1}$ admits a non-zero HPCV field $V$ such that $ϕV = 0$, then $M^{2n+1}$ is locally a warped product of an almost Kaehler manifold and an open interval. As a corollary of this we obtain few classifications of an almost Kenmotsu manifold to be a Kenmotsu manifold and also prove that the integral manifolds of D are totally umbilical submanifolds of $M^{2n+1}$. Further, we prove that if an almost Kenmotsu manifold with positive constant $ξ$-sectional curvature admits a non-zero HPCV field $V$, then either $M^{2n+1}$ is locally a warped product of an almost Kaehler manifold and an open interval or isometric to a sphere. Moreover, a $(k,μ)'$-almost Kenmotsu manifold admitting a HPCV field $V$ such that $ϕV = 0$ is either locally isometric to $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$ or $V$ is an eigenvector of $h'$. Finally, an example is presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源