论文标题

KERR指标的拓扑分析

Analysis of the Topology of the Kerr Metric

论文作者

Alexander, Shatskiy

论文摘要

测试粒子的运动方程集成了旋转的Kerr黑洞(BH)的场。由于缺乏针对Kerr公制的Carter-Penrose图(CPD)的分析转换,因此通过分析运动方程来研究Kerr BH的拓扑。分析了Reisner-Nordström指标的CPD的转换。分析了Reisner-Nordström拓扑的边界条件问题。提出了解决边界条件问题的解决方案。事实证明,在Reisner-Nordström拓扑中,只有一种进入另一个宇宙的方法。对于Kerr拓扑而言,发现了与普通过渡不一致的另一个宇宙过渡到另一个宇宙的可能性。通过零径向坐标(零半径)的表面进行此替代过渡。发现掉落粒子的初始条件对应于向另一个宇宙的替代过渡。估计了作用在Kerr度量中的降落体上的潮汐力,并且证明了人体向其他宇宙过渡而不会被潮汐力摧毁的可能性。

The equations of motion of a test particle are integrated for the field of a rotating Kerr black hole (BH). Due to the lack of analytical transformations for the Carter-Penrose diagrams (CPDs) for the Kerr metric, the topology of the Kerr BH is studied by analytical investigation of the equations of motion. Transformations for the CPDs for the Reisner-Nordström metric are analyzed. The problem of boundary conditions for the Reisner-Nordström topology is analyzed. A solution to this problem of boundary conditions is proposed. It is proved that, in the Reisner-Nordström topology, only one way to go to another universe is possible. For the Kerr topology, the possibility of the existence of an alternative transition to another universe that does not coincide with the universe for the ordinary transition is found. This alternative transition is performed through a surface with a zero radial coordinate (zero radius). Initial conditions for the falling particle are found that correspond to an alternative transition to another universe. The tidal forces acting on a falling body in the Kerr metric are estimated, and the possibility of the transition of the body to other universes without being destroyed by tidal forces is proved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源