论文标题

固定伪随机的伪数发电机和点设置,且恒星差低

Secure pseudorandom bit generators and point sets with low star-discrepancy

论文作者

Gómez, Ana-Isabel, Gómez-Pérez, Domingo, Pillichshammer, Friedrich

论文摘要

星际分配是针对单位立方体中设置点的分布分布的定量度量,该点与准蒙特卡罗算法的集成误差密切相关。如今,这些流行的集成规则也适用于非常高维的整合问题。因此,迫切需要差异较低的合理大小的多维点集。 Heinrich,Novak,Wasilkowski和Wotniakowski的开创性结果表明,存在一个正数$ C $,因此,对于每个尺寸$ d $,在$ [0,1)^d $中都设置了一个$ n $ element点,其中最多$ C \ sqrt/n n} $ c \ sqrt/n} $。这是一个纯粹的存在结果,这种点集的明确结构将是非常可取的。这些证明基于$ n $ element点集的随机样本,对于实际应用而言很难实现。 在本文中,我们建议使用安全的伪andom位生成器来生成点集,并使用订单$ o(\ sqrt {d/n})$的星级拨号。理论上并通过数值实验来支持该建议。

The star-discrepancy is a quantitative measure for the irregularity of distribution of a point set in the unit cube that is intimately linked to the integration error of quasi-Monte Carlo algorithms. These popular integration rules are nowadays also applied to very high-dimensional integration problems. Hence multi-dimensional point sets of reasonable size with low discrepancy are badly needed. A seminal result from Heinrich, Novak, Wasilkowski and Woźniakowski shows the existence of a positive number $C$ such that for every dimension $d$ there exists an $N$-element point set in $[0,1)^d$ with star-discrepancy of at most $C\sqrt{d/N}$. This is a pure existence result and explicit constructions of such point sets would be very desirable. The proofs are based on random samples of $N$-element point sets which are difficult to realize for practical applications. In this paper we propose to use secure pseudorandom bit generators for the generation of point sets with star-discrepancy of order $O(\sqrt{d/N})$. This proposal is supported theoretically and by means of numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源