论文标题
量子孤子散射歧管
Quantum soliton scattering manifolds
论文作者
论文摘要
我们考虑量子多层散射问题。对于BPS理论,人们将完整的田间理论截断为模量空间,该空间是能量最小化场构型的有限尺寸歧管,并研究了这一点的量子机械问题。非BPS理论 - 通用情况 - 没有那么明显的截断。我们将量子孤子散射歧管定义为满足渐近完整性并尊重慢速移动孤子的基本经典动态的配置空间。这样做之后,我们提出了一种构建此类歧管的新方法。在BPS情况下,$ N $ -Soliton Moduli Space的尺寸$ \ MATHCAL {M} _n $ IS $ N $乘以$ \ Mathcal {M} _1 $的尺寸。我们表明,这种缩放不一定对于在非BPS理论中的散射歧管不一定有效,并认为它对于Skyrme和Baby-Skyrme模型是错误的。在这些模型中,我们表明相对相位差可以在孤子碰撞期间产生相对大小差异。渐近地,它们分别为零和非零模式,这种新机制使这种模式之间的二分法软化。然后,使用此发现,我们证明了2-Skyrmion配置空间的所有先前截断,因为它们的尺寸错误,因此不适合量子散射问题。这证明了最近的数值工作,这表明低能配置空间是14维的(如前所述,而不是12维)。我们建议一些方法来为2-skyrmion问题构建合适的流形,并讨论我们新的定义和构造对通用孤儿理论的应用。
We consider the quantum multisoliton scattering problem. For BPS theories one truncates the full field theory to the moduli space, a finite dimensional manifold of energy minimising field configurations, and studies the quantum mechanical problem on this. Non-BPS theories -- the generic case -- have no such obvious truncation. We define a quantum soliton scattering manifold as a configuration space which satisfies asymptotic completeness and respects the underlying classical dynamics of slow moving solitons. Having done this, we present a new method to construct such manifolds. In the BPS case the dimension of the $n$-soliton moduli space $\mathcal{M}_n$ is $n$ multiplied by the dimension of $\mathcal{M}_1$. We show that this scaling is not necessarily valid for scattering manifolds in non-BPS theories, and argue that it is false for the Skyrme and baby-Skyrme models. In these models, we show that a relative phase difference can generate a relative size difference during a soliton collision. Asymptotically, these are zero and non-zero modes respectively and this new mechanism softens the dichotomy between such modes. Using this discovery, we then show that all previous truncations of the 2-Skyrmion configuration space are unsuitable for the quantum scattering problem as they have the wrong dimension. This gives credence to recent numerical work which suggests that the low-energy configuration space is 14-dimensional (rather than 12-dimensional, as previously thought). We suggest some ways to construct a suitable manifold for the 2-Skyrmion problem, and discuss applications of our new definition and construction for general soliton theories.