论文标题

Robert-Wagner泡沫评估和链接同源性的变形

A deformation of Robert-Wagner foam evaluation and link homology

论文作者

Khovanov, Mikhail, Kitchloo, Nitu

论文摘要

我们考虑了罗伯特 - 瓦格纳泡沫评估公式的变形,并着眼于与正式群体的关系。建立了变形评估的完整性,从而为平面GL(N)Moy图(Murakami-Ohtsuki-Yamada图)提供了状态空间。在GL(2)情况下详细阐明了变形的绞线关系。这些绞线关系变形GL(2)Beliakova,Hogancamp,Putyra和Wehrli的泡沫关系。我们建立了分配给链接图的链链络合物的雷德运动员移动不变性,从而为我们提供了链接同源性理论。

We consider a deformation of the Robert-Wagner foam evaluation formula, with an eye toward a relation to formal groups. Integrality of the deformed evaluation is established, giving rise to state spaces for planar GL(N) MOY graphs (Murakami-Ohtsuki-Yamada graphs). Skein relations for the deformation are worked out in details in the GL(2) case. These skein relations deform GL(2) foam relations of Beliakova, Hogancamp, Putyra and Wehrli. We establish the Reidemeister move invariance of the resulting chain complexes assigned to link diagrams, giving us a link homology theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源