论文标题

通用对称组的量子参考帧

Quantum reference frames for general symmetry groups

论文作者

de la Hamette, Anne-Catherine, Galley, Thomas D.

论文摘要

完全相关的量子理论必定需要说明量子参考框架的变化,其中量子参考帧是相对于所描述其他系统的量子系统。通过引入一种关系形式主义,该形式主义识别具有对称组$ g $元素的坐标系统,我们定义了一个通用操作员,用于在与组$ g $相关的量子参考框架之间进行可逆更改。这将概括为转换的已知操作员,并提升为任意有限和当地紧凑的群体,包括非阿贝尔群体。我们在哪些条件下显示,可以唯一地将坐标选择分配给物理系统(形成参考帧)以及如何在它们之间进行可逆转换,从而在其他坐标系统的“叠加”坐标系统之间提供转换。我们从关系物理学原理和参考框架的连贯变化中获得量子参考框架的变化。我们证明了一个定理,指出与这些原则一致的量子参考框架的更改是统一的,并且仅当参考系统带有$ g $的左右定期表示。在对称组$ g $的情况下,我们还定义了经典和量子系统的不可逆变化的参考框架,即半独立产品$ g = n \ rtimes p $或直接产品$ g = n \ times p $,提供了沿途可逆和不可逆的量子参考系统的多个示例。最后,我们将本工作中发展的关系形式主义和参考框架的变化应用于Wigner的朋友的场景,使用参考框架的明确更改与使用测量算子的间接推理相对于关系量子力学中的那些类似的结论。

A fully relational quantum theory necessarily requires an account of changes of quantum reference frames, where quantum reference frames are quantum systems relative to which other systems are described. By introducing a relational formalism which identifies coordinate systems with elements of a symmetry group $G$, we define a general operator for reversibly changing between quantum reference frames associated to a group $G$. This generalises the known operator for translations and boosts to arbitrary finite and locally compact groups, including non-Abelian groups. We show under which conditions one can uniquely assign coordinate choices to physical systems (to form reference frames) and how to reversibly transform between them, providing transformations between coordinate systems which are `in a superposition' of other coordinate systems. We obtain the change of quantum reference frame from the principles of relational physics and of coherent change of reference frame. We prove a theorem stating that the change of quantum reference frame consistent with these principles is unitary if and only if the reference systems carry the left and right regular representations of $G$. We also define irreversible changes of reference frame for classical and quantum systems in the case where the symmetry group $G$ is a semi-direct product $G = N \rtimes P$ or a direct product $G = N \times P$, providing multiple examples of both reversible and irreversible changes of quantum reference system along the way. Finally, we apply the relational formalism and changes of reference frame developed in this work to the Wigner's friend scenario, finding similar conclusions to those in relational quantum mechanics using an explicit change of reference frame as opposed to indirect reasoning using measurement operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源