论文标题

用于在宽场调查中进行微透明的机器学习分类器

A Machine Learning Classifier for Microlensing in Wide-Field Surveys

论文作者

Godines, D., Bachelet, E., Narayan, G., Street, R. A.

论文摘要

虽然微透明非常罕见,但观察到的平均每百万颗星每百万星平均发生,但是当前和近乎未来的调查即将在线进行,能够提供几乎整个可见的天空的光度法,从而每隔几天或每隔几天的速度深度为r〜22 mag或flainter,这将导致黑洞和外科销售的检测,从而通过对微量镜的探测来探测。基于银河系模型,我们可以预期在银河系的更广泛区域的微透明事件,尽管这些调查的节奏(每天2-3)低于传统的微透镜调查,这使得有效的检测成为挑战。在时间序列数据的实用性中,正在使用非常高的数据速率调查来实时检测和对瞬态事件进行分类,但是在检测微透镜事件的情况下,已经发表了有限的工作,特别是在数据流相对低的情况下,已经发表了有限的工作。在这项研究中,我们探讨了随机森林算法使用时间序列数据识别微透镜信号的实用性,目的是创建一个有效的机器学习分类器,即使使用低估数据,也可以应用于在宽场调查中搜索微透镜。除了使用PTF/IPTF调查数据和当前运行的ZTF测试外,我们还使用OGLE-II微透镜数据集应用和优化了分类器,该数据适用于即将到来的LSST所设想的相同数据处理基础结构。

While microlensing is very rare, occurring on average once per million stars observed, current and near-future surveys are coming online with the capability of providing photometry of almost the entire visible sky to depths up to R ~ 22 mag or fainter every few days, which will contribute to the detection of black holes and exoplanets through follow-up observations of microlensing events. Based on galactic models, we can expect microlensing events across a vastly wider region of the galaxy, although the cadence of these surveys (2-3 per day ) is lower than traditional microlensing surveys, making efficient detection a challenge. Rapid advances are being made in the utility of time-series data to detect and classify transient events in real-time using very high data-rate surveys, but limited work has been published regarding the detection of microlensing events, particularly for when the data streams are of relatively low-cadence. In this research, we explore the utility of a Random Forest algorithm for identifying microlensing signals using time-series data, with the goal of creating an efficient machine learning classifier that can be applied to search for microlensing in wide-field surveys even with low-cadence data. We have applied and optimized our classifier using the OGLE-II microlensing dataset, in addition to testing with PTF/iPTF survey data and the currently operating ZTF, which applies the same data handling infrastructure that is envisioned for the upcoming LSST.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源