论文标题
部分可观测时空混沌系统的无模型预测
A primer on coupled state-switching models for multiple interacting time series
论文作者
论文摘要
通常应用州开关模型,例如隐藏的马尔可夫模型或马尔可夫转换回归模型,以分析通过潜在的不可观察状态驱动的观测值序列。耦合状态切换模型扩展了这些方法,以解决多个观察序列的情况,这些观察序列的基本变量相互作用。在本文中,我们概述了与状态转换模型中耦合相关的建模技术,从而形成了一个丰富而灵活的统计框架,对于建模相关时间序列特别有用。仿真实验证明了能够说明异步进化以及基础潜在过程之间的相互作用的相关性。使用与运动数据推断出的海豚母亲与她的小牛之间的相互作用的两个案例研究进一步说明了这些模型; b)对重症监护病房中696名患者收集的电子健康记录数据。
State-switching models such as hidden Markov models or Markov-switching regression models are routinely applied to analyse sequences of observations that are driven by underlying non-observable states. Coupled state-switching models extend these approaches to address the case of multiple observation sequences whose underlying state variables interact. In this paper, we provide an overview of the modelling techniques related to coupling in state-switching models, thereby forming a rich and flexible statistical framework particularly useful for modelling correlated time series. Simulation experiments demonstrate the relevance of being able to account for an asynchronous evolution as well as interactions between the underlying latent processes. The models are further illustrated using two case studies related to a) interactions between a dolphin mother and her calf as inferred from movement data; and b) electronic health record data collected on 696 patients within an intensive care unit.