论文标题
公正排名的深度复发模型
A Deep Recurrent Survival Model for Unbiased Ranking
论文作者
论文摘要
在处理隐式但有偏见的用户反馈数据时,位置偏差是信息检索的关键问题。公正的排名方法通常依赖因果关系模型和DEBIAS通过反向倾向加权来反馈。尽管实用,但这些方法仍然遇到两个主要问题。首先,当推断用户单击时,通常会忽略上下文信息的影响,例如已检查的文档。其次,仅考虑偏差的位置,但忽略了用户浏览行为引起的其他问题。在本文中,我们提出了一个端到端的深度重复生存排名(DRSR),这是一个统一的框架,可以共同对用户的各种行为进行建模,以(i)考虑排名列表中的丰富上下文信息; (ii)解决用户行为的隐藏问题,即,以挖掘无需单击(非单击查询)的查询模式,并模拟无法真正反映用户浏览意图(不信任观察)的跟踪日志。具体来说,我们采用一个经常性的神经网络来对上下文信息进行建模,并估算每个位置用户反馈的条件可能性。然后,我们将生存分析技术与概率链规则合并,以数学恢复一个用户各种行为的无偏关节概率。 DRSR可以轻松地与点和成对的学习目标一起融合。在两个大型工业数据集上进行的广泛实验表明,与最先进的工厂相比,我们的模型的显着性能提高。
Position bias is a critical problem in information retrieval when dealing with implicit yet biased user feedback data. Unbiased ranking methods typically rely on causality models and debias the user feedback through inverse propensity weighting. While practical, these methods still suffer from two major problems. First, when inferring a user click, the impact of the contextual information, such as documents that have been examined, is often ignored. Second, only the position bias is considered but other issues resulted from user browsing behaviors are overlooked. In this paper, we propose an end-to-end Deep Recurrent Survival Ranking (DRSR), a unified framework to jointly model user's various behaviors, to (i) consider the rich contextual information in the ranking list; and (ii) address the hidden issues underlying user behaviors, i.e., to mine observe pattern in queries without any click (non-click queries), and to model tracking logs which cannot truly reflect the user browsing intents (untrusted observation). Specifically, we adopt a recurrent neural network to model the contextual information and estimates the conditional likelihood of user feedback at each position. We then incorporate survival analysis techniques with the probability chain rule to mathematically recover the unbiased joint probability of one user's various behaviors. DRSR can be easily incorporated with both point-wise and pair-wise learning objectives. The extensive experiments over two large-scale industrial datasets demonstrate the significant performance gains of our model comparing with the state-of-the-arts.