论文标题

小量子计算机上的核心聚类

Coreset Clustering on Small Quantum Computers

论文作者

Tomesh, Teague, Gokhale, Pranav, Anschuetz, Eric R., Chong, Frederic T.

论文摘要

许多用于机器学习的量子算法都需要访问叠加中的经典数据。但是,对于许多自然数据集和算法,将数据集加载到叠加中所需的开销可以消除经典算法上的任何潜在量子加速。哈罗(Harrow)最近的工作引入了混合量子量子计算中的新范式来解决此问题,依靠核心来最大程度地减少量子算法的数据加载开销。我们通过将其作为QAOA优化实例上的小核心来调查,以在近期量子计算机上进行$ k $ -MEANS的聚类。我们将这种方法的性能比较了经典$ k $ - 在IBM Q硬件上以数字和实验性聚类的经典$ K $ - 表示。我们能够找到相对于随机采样良好的核心工作良好的数据集,而QAOA可能在核心上超过标准的$ k $ -Means。但是,查找核心和QAOA都可以正常工作的数据集(对于整个数据集上的量子优势超过$ k $的量子优势,这是必不可少的)。

Many quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup over classical algorithms. Recent work by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue, relying on coresets to minimize the data loading overhead of quantum algorithms. We investigate using this paradigm to perform $k$-means clustering on near-term quantum computers, by casting it as a QAOA optimization instance over a small coreset. We compare the performance of this approach to classical $k$-means clustering both numerically and experimentally on IBM Q hardware. We are able to find data sets where coresets work well relative to random sampling and where QAOA could potentially outperform standard $k$-means on a coreset. However, finding data sets where both coresets and QAOA work well--which is necessary for a quantum advantage over $k$-means on the entire data set--appears to be challenging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源