论文标题
符号狄拉克的共同体学和字符向元容器群体提升
Symplectic Dirac cohomology and lifting of characters to metaplectic groups
论文作者
论文摘要
我们通过ADAMS通过ADAMS提出角色提升到符号群的转移因子在Superalgebras的Simplectic Dirac共同体中,以及Rittenberg-Scheunert lie superalgebra $ \ fros $ \ frs(1 | 2n)$ and lie lie ealgebra $ \ fro(+1)的Rittenberg-Scheunert对应关系。这导致将字符直接提升从线性符号组$ sp(2n,\ bbr)$到其非线性覆盖Metaplectic组$ MP(2n,\ bbr)$。
We formulate the transfer factor of character lifting from orthogonal groups to symplectic groups by Adams in the framework of symplectic Dirac cohomology for the Lie superalgebras and the Rittenberg-Scheunert correspondence of representations of the Lie superalgebra $\fro\frsp(1|2n)$ and the Lie algebra $\fro(2n+1)$. This leads to formulation of a direct lifting of characters from the linear symplectic group $Sp(2n,\bbR)$ to its nonlinear covering metaplectic group $Mp(2n,\bbR)$.