论文标题
湍流边界层在流悬浮的多孔材料上
Turbulent boundary layers over streamwise-preferential porous materials
论文作者
论文摘要
最近的数值模拟表明,流向偏见的各向异性多孔材料有可能通过与盗贼的类似机制减少湍流中的皮肤摩擦。本文报告了在$re_τ\ $re_τ\ $re_τ\ 3D打印的多孔基板上,在湍流边界层中进行的粒子图像速度测定(PIV)测量值,表现出这种流向预呈现的渗透性。多孔材料已将流渗透性归一化$ \ sqrt {k_ {xx}^+} \大约3.0 $,以及壁式和跨度渗透性$ \ sqrt {k_ {yy}^+} = \ sqrt {该材料在水道设施中的平板边界层设置的下游中的一半中被冲洗成切口。在多孔底物的几个位置进行的测量提供了对边界层发展的洞察力。对于完全发达的条件,平均剖面显示了对数区域在多孔材料上的存在,其常数与在光滑的壁上相似。从粒子图像中估算单像素分辨率的平均轮廓的一种技术表明,在多孔底物上存在$ u_s^+ \左右的界面滑移速度的界面滑动速度。从外层拟合到平均轮廓的摩擦速度估计值表明,在多孔底物上阻力有边缘增加。 PIV测量表明,近壁区域中流速度波动的强度降低,并且壁正常速度波动的强度增加。这些观察结果与仿真结果一致,这表明具有$ \ sqrt {k_ {yy}^+}> 0.4 $的材料容易受到跨度滚筒的出现,类似于Kelvin-Helmholtz涡流,从而降低了降低阻力性能。速度光谱表明在实验中也出现了这种结构。
Recent numerical simulations indicate that streamwise-preferential anisotropic porous materials have the potential to reduce skin friction in turbulent flows through a similar mechanism to riblets. This paper reports particle image velocimetry (PIV) measurements made in turbulent boundary layers at $Re_τ\approx 360$ over 3D-printed porous substrates exhibiting such streamwise-preferential permeability. The porous material has normalized streamwise permeability $\sqrt{K_{xx}^+}\approx 3.0$ and wall-normal and spanwise permeabilities $\sqrt{K_{yy}^+} = \sqrt{K_{zz}^+} \approx 1.1$. This material is flush-mounted into a cutout in the downstream half of a flat-plate boundary layer setup in a water channel facility. Measurements made at several locations along the porous substrate provide insight into boundary layer development. For fully-developed conditions, the mean profiles show the presence of a logarithmic region over the porous material with similar constants to those found over a smooth wall. A technique that estimates the mean profile at single-pixel resolution from the particle images suggests the presence of an interfacial slip velocity of $U_s^+ \approx \sqrt{K_{xx}^+}$ over the porous substrate. Friction velocity estimates obtained from outer layer fits to the mean profile suggest a marginal increase in drag over the porous substrate. PIV measurements show a decrease in the intensity of streamwise velocity fluctuations in the near-wall region and an increase in the intensity of wall-normal velocity fluctuations. These observations are consistent with simulation results, which suggest that materials with $\sqrt{K_{yy}^+} > 0.4$ are susceptible to the emergence of spanwise rollers similar to Kelvin-Helmholtz vortices that degrade drag reduction performance. Velocity spectra indicate that such structures emerge in the experiments as well.