论文标题
通过对空间和时间概念的意识,复杂的顺序理解
Complex Sequential Understanding through the Awareness of Spatial and Temporal Concepts
论文作者
论文摘要
了解顺序信息是人工智能的基本任务。当前的神经网络试图从整体上学习空间和时间信息,限制了它们在远程序列上表示大规模空间表示的能力。在这里,我们介绍了一种称为半耦合结构(SCS)的新建模策略,该策略由深层神经网络组成,该网络将复杂的空间和时间概念学习解散。半耦合结构可以学会将输入信息隐式分开为独立部分,并分别处理这些部分。实验表明,半耦合结构可以成功地注释对象在图像中的轮廓并执行视频动作识别。对于序列到序列问题,半耦合结构可以根据观察到的图像预测未来的气象雷达回声图像。综上所述,我们的结果表明,半耦合结构具有提高大规模顺序任务上类似LSTM模型的性能的能力。
Understanding sequential information is a fundamental task for artificial intelligence. Current neural networks attempt to learn spatial and temporal information as a whole, limited their abilities to represent large scale spatial representations over long-range sequences. Here, we introduce a new modeling strategy called Semi-Coupled Structure (SCS), which consists of deep neural networks that decouple the complex spatial and temporal concepts learning. Semi-Coupled Structure can learn to implicitly separate input information into independent parts and process these parts respectively. Experiments demonstrate that a Semi-Coupled Structure can successfully annotate the outline of an object in images sequentially and perform video action recognition. For sequence-to-sequence problems, a Semi-Coupled Structure can predict future meteorological radar echo images based on observed images. Taken together, our results demonstrate that a Semi-Coupled Structure has the capacity to improve the performance of LSTM-like models on large scale sequential tasks.