论文标题

图表代数的常规理想

Regular ideals of graph algebras

论文作者

Brown, Jonathan H., Fuller, Adam H., Pitts, David R., Reznikoff, Sarah A.

论文摘要

令$ c^*(e)$为图形c $^*$ - 排列图$ e $的代数。我们对$ c^*(e)$的规则常规理想的顶点集进行了完整的描述。结果表明,当$ e $满足条件(l)时,常规理想$ c^*(e)$是一类规范不变的理想,可以在商中保留条件(l)。也就是说,我们表明,如果$ e $满足条件(l),那么常规的理想$ j \ linhd c^*(e)$必然是衡量不变的。此外,如果$ j \ linhd c^*(e)$是常规的理想,则表明$ c^*(e)/j \ simeq c^*(f)$ $ f $满足条件(l)。

Let $C^*(E)$ be the graph C$^*$-algebra of a row-finite graph $E$. We give a complete description of the vertex sets of the gauge-invariant regular ideals of $C^*(E)$. It is shown that when $E$ satisfies Condition (L) the regular ideals $C^*(E)$ are a class of gauge-invariant ideals which preserve Condition (L) under quotients. That is, we show that if $E$ satisfies Condition (L) then a regular ideal $J \unlhd C^*(E)$ is necessarily gauge-invariant. Further, if $J \unlhd C^*(E)$ is a regular ideal, it is shown that $C^*(E)/J \simeq C^*(F)$ where $F$ satisfies Condition (L).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源