论文标题

一个非本地物理学的深度学习框架,使用Peridynamic差异操作员

A nonlocal physics-informed deep learning framework using the peridynamic differential operator

论文作者

Haghighat, Ehsan, Bekar, Ali Can, Madenci, Erdogan, Juanes, Ruben

论文摘要

最近引入的物理信息神经网络(PINN)框架将物理学纳入了深度学习中,并为偏微分方程(PDES)解决方案提供了有希望的途径以及方程参数的识别。但是,由于网络无法在全球范围内捕获解决方案行为,因此现有PINN方法的性能可能在存在锋利梯度的情况下降低。我们认为,除了短期(本地)空间和时间变量外,还可以通过将远程(非局部)交互引入网络输入中来解决这一缺点。在此之后,在这里,我们使用Peridynynamic差异操作员(PDDO)开发了一种非局部PINN方法---一种数值方法,该方法结合了远程相互作用并消除了管理方程中的空间衍生物。由于PDDO功能可以很容易地纳入神经网络架构中,因此非局部性不会降低现代深度学习算法的性能。我们将非局部PDDO-PINN应用于固体力学中的材料参数的溶液和鉴定,尤其是在经受刚性冲头凹痕的域中的弹性变形,为此,混合的位移 - 交流边界条件会导致解决方案中的局部变形和锋利的梯度。我们在解决方案的准确性和参数推理中记录了非局部PINN相对于局部PINN的出色行为,这说明了其模拟和发现溶液会发展出尖锐梯度的偏微分方程的潜力。

The Physics-Informed Neural Network (PINN) framework introduced recently incorporates physics into deep learning, and offers a promising avenue for the solution of partial differential equations (PDEs) as well as identification of the equation parameters. The performance of existing PINN approaches, however, may degrade in the presence of sharp gradients, as a result of the inability of the network to capture the solution behavior globally. We posit that this shortcoming may be remedied by introducing long-range (nonlocal) interactions into the network's input, in addition to the short-range (local) space and time variables. Following this ansatz, here we develop a nonlocal PINN approach using the Peridynamic Differential Operator (PDDO)---a numerical method which incorporates long-range interactions and removes spatial derivatives in the governing equations. Because the PDDO functions can be readily incorporated in the neural network architecture, the nonlocality does not degrade the performance of modern deep-learning algorithms. We apply nonlocal PDDO-PINN to the solution and identification of material parameters in solid mechanics and, specifically, to elastoplastic deformation in a domain subjected to indentation by a rigid punch, for which the mixed displacement--traction boundary condition leads to localized deformation and sharp gradients in the solution. We document the superior behavior of nonlocal PINN with respect to local PINN in both solution accuracy and parameter inference, illustrating its potential for simulation and discovery of partial differential equations whose solution develops sharp gradients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源