论文标题
三角形网格上的海冰动力学
Sea-ice dynamics on triangular grids
论文作者
论文摘要
我们在三角形网格上呈现了海冰动力学的稳定离散化,可以直接耦合到具有Arakawa C型type straggering的三角形网格上的海洋模型。该方法基于不合格的有限元框架,即Crouzeix-Raviart有限元。随着粘性塑料和弹性塑料应力张量与Crouzeix-raviart有限元在速度场中产生振荡,我们引入了基于边缘的稳定化。为了证明稳定的crouzeix-raviart近似与连续海冰方程的解决方案一致,我们得出了$ h^1 $ estimate。 在数值分析中,我们表明稳定是基本的,以实现海冰速度场的稳定近似。
We present a stable discretization of sea-ice dynamics on triangular grids that can straightforwardly be coupled to an ocean model on a triangular grid with Arakawa C-type staggering. The approach is based on a nonconforming finite element framework, namely the Crouzeix-Raviart finite element. As the discretization of the viscous-plastic and elastic-viscous-plastic stress tensor with the Crouzeix-Raviart finite element produces oscillations in the velocity field, we introduce an edge-based stabilization. To show that the stabilized Crouzeix-Raviart approximation is qualitative consistent with the solution of the continuous sea-ice equations, we derive a $H^1$-estimate. In a numerical analysis we show that the stabilization is fundamental to achieve stable approximation of the sea-ice velocity field.