论文标题
在西奈型随机环境中的流体动力限制
On hydrodynamic limits in Sinai-type random environments
论文作者
论文摘要
我们研究了随机步行系统的流体动力学行为,其零范围相互作用在一维圆环上在常见的“西奈型”随机环境中移动。发现的流体动力方程是一种准线性SPDE,其“粗糙”随机漂移项来自随机环境的缩放和粒子相互作用的均质化。这项工作的一部分动机是了解粒子质量的时空极限与已知的单粒子BROX扩散极限的时空极限如何相关。在这方面,鉴于显示的流体动力极限,我们通过两个比例限制描述了形式的连接。
We investigate the hydrodynamical behavior of a system of random walks with zero-range interactions moving in a common `Sinai-type' random environment on a one dimensional torus. The hydrodynamic equation found is a quasilinear SPDE with a `rough' random drift term coming from a scaling of the random environment and a homogenization of the particle interaction. Part of the motivation for this work is to understand how the space-time limit of the particle mass relates to that of the known single particle Brox diffusion limit. In this respect, given the hydrodynamic limit shown, we describe formal connections through a two scale limit.