论文标题

估算对抗扰动下的主要组件

Estimating Principal Components under Adversarial Perturbations

论文作者

Awasthi, Pranjal, Chen, Xue, Vijayaraghavan, Aravindan

论文摘要

鲁棒性是广泛部署机器学习算法的关键要求,并且在统计和计算机科学方面都受到了很多关注。我们研究了一种自然的鲁棒性模型,以解决我们称为对抗性扰动模型的高维统计估计问题。对手可以将每个样本任意地扰动到以某些$ \ ell_q $ norm(例如$ \ ell_ \ infty $)中测量的指定幅度$δ$。我们的模型是由诸如低精度机器学习和对抗性培训等新兴范式激励的。 我们研究了在对抗性扰动模型下估计高斯协方差矩阵的主要$ r $主要子空间的经典问题。我们设计了一种具有损坏数据的计算高效算法,恢复了顶部$ r $ $ r $主空间的估计,其错误取决于我们确定的稳健性参数$κ$。该参数对应于投影仪的$ q \ to 2 $运算符在主要子空间上,并概述了稀疏的分析概念。此外,在没有腐败的情况下,我们的算法保证将恢复现有的界限,例如稀疏PCA及其较高等级类似物。我们还证明,上述对参数$κ$的依赖性几乎是渐近的最佳选择,而不仅仅是最小程度的意义,而且对于每个问题的每个实例都非常明显。此实例最佳保证表明,子空间的$ q \至2 $运算符基本表征了对抗扰动下的估计错误。

Robustness is a key requirement for widespread deployment of machine learning algorithms, and has received much attention in both statistics and computer science. We study a natural model of robustness for high-dimensional statistical estimation problems that we call the adversarial perturbation model. An adversary can perturb every sample arbitrarily up to a specified magnitude $δ$ measured in some $\ell_q$ norm, say $\ell_\infty$. Our model is motivated by emerging paradigms such as low precision machine learning and adversarial training. We study the classical problem of estimating the top-$r$ principal subspace of the Gaussian covariance matrix in high dimensions, under the adversarial perturbation model. We design a computationally efficient algorithm that given corrupted data, recovers an estimate of the top-$r$ principal subspace with error that depends on a robustness parameter $κ$ that we identify. This parameter corresponds to the $q \to 2$ operator norm of the projector onto the principal subspace, and generalizes well-studied analytic notions of sparsity. Additionally, in the absence of corruptions, our algorithmic guarantees recover existing bounds for problems such as sparse PCA and its higher rank analogs. We also prove that the above dependence on the parameter $κ$ is almost optimal asymptotically, not just in a minimax sense, but remarkably for every instance of the problem. This instance-optimal guarantee shows that the $q \to 2$ operator norm of the subspace essentially characterizes the estimation error under adversarial perturbations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源