论文标题

用于预测层次时间序列的机器学习方法

A machine learning approach for forecasting hierarchical time series

论文作者

Mancuso, Paolo, Piccialli, Veronica, Sudoso, Antonio M.

论文摘要

在本文中,我们提出了一种用于预测层次时间序列的机器学习方法。在处理层次时间序列时,除了产生准确的预测外,还需要选择一种适合和解预测的方法。预测对帐是调整预测以使它们在整个层次结构之间保持一致的过程。在文献中,通常通过在适当的时间序列预测方法产生的基础预测上使用后处理技术来实现连贯性。相反,我们的想法是使用深层神经网络直接产生准确而和解的预测。我们利用深神网络提取信息捕获层次结构的信息的能力。我们通过最大程度地减少定制的损失函数来强加训练时间的和解。在许多实际应用中,除了时间序列数据外,分层时间序列还包括有益于提高预测准确性的解释变量。利用这些进一步的信息,我们的方法将在层次结构的任何级别提取的时间序列特征与解释变量提取的时间序列功能之间的关系连接到端到端神经网络,从而提供准确,和解的点预测。该方法的有效性在三个现实世界数据集上进行了验证,在该数据集中,我们的方法在层次预测中优于最先进的竞争对手。

In this paper, we propose a machine learning approach for forecasting hierarchical time series. When dealing with hierarchical time series, apart from generating accurate forecasts, one needs to select a suitable method for producing reconciled forecasts. Forecast reconciliation is the process of adjusting forecasts to make them coherent across the hierarchy. In literature, coherence is often enforced by using a post-processing technique on the base forecasts produced by suitable time series forecasting methods. On the contrary, our idea is to use a deep neural network to directly produce accurate and reconciled forecasts. We exploit the ability of a deep neural network to extract information capturing the structure of the hierarchy. We impose the reconciliation at training time by minimizing a customized loss function. In many practical applications, besides time series data, hierarchical time series include explanatory variables that are beneficial for increasing the forecasting accuracy. Exploiting this further information, our approach links the relationship between time series features extracted at any level of the hierarchy and the explanatory variables into an end-to-end neural network providing accurate and reconciled point forecasts. The effectiveness of the approach is validated on three real-world datasets, where our method outperforms state-of-the-art competitors in hierarchical forecasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源