论文标题

Crouzeix-Raviart和Raviart-Thomas-thomas有限元错误分析各向异性网状违反最大角度条件

Crouzeix-Raviart and Raviart-Thomas finite-element error analysis on anisotropic meshes violating the maximum-angle condition

论文作者

Ishizaka, Hiroki, Kobayashi, Kenta, Tsuchiya, Takuya

论文摘要

我们研究了三维各向异性网格上泊松问题的分段线性不合格的crouzeix-raviar和最低阶raviart-thomas有限元方法。我们首先给出Crouzeix-Raviart和Raviart-Thomas有限元元素近似问题的错误估计。接下来,我们介绍了raviart-thomas有限元法与富集的crouzeix-raviart有限元元素之间的等价性。我们强调,在网格分配过程中,我们不会施加形状定型或最大角度条件。数值结果证实了我们获得的结果。

We investigate the piecewise linear nonconforming Crouzeix-Raviar and the lowest order Raviart-Thomas finite-element methods for the Poisson problem on three-dimensional anisotropic meshes. We first give error estimates of the Crouzeix-Raviart and the Raviart-Thomas finite-element approximate problems. We next present the equivalence between the Raviart-Thomas finite-element method and the enriched Crouzeix-Raviart finite-element method. We emphasise that we do not impose either shape-regular or maximum-angle condition during mesh partitioning. Numerical results confirm the results that we obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源