论文标题
在定向聚合物的Larkin模型中对最佳重置率无序的敏感性
Susceptibility to disorder of the optimal resetting rate in the Larkin model of directed polymers
论文作者
论文摘要
我们考虑了带有高斯分布的随机力的定向聚合物的Larkin模型,并增加了重置过程,从而以恒定速率$ r $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ REN重置为零。我们表达了平均在横向位置的固定值以吸收目标吸收的平均障碍。由于随机力的分布的独立性,该表达式类似于重置下扩散粒子的平均吸收时间,该粒子在重置率的最佳值$ r^\ ast $中具有一个最小值。此外,围绕重置率的$ r^\ ast $的振幅的功率系列可以扩展吸收的平均时间。我们获得了最佳重置速率以封闭形式的疾病的敏感性,并发现其为正。
We consider the Larkin model of a directed polymer with Gaussian-distributed random forces, with the addition of a resetting process whereby the transverse position of the end-point of the polymer is reset to zero with constant rate $r$. We express the average over disorder of the mean time to absorption by an absorbing target at a fixed value of the transverse position. Thanks to the independence properties of the distribution of the random forces, this expression is analogous to the mean time to absorption for a diffusive particle under resetting, which possesses a single minimum at an optimal value $r^\ast$ of the resetting rate . Moreover, the mean time to absorption can be expanded as a power series of the amplitude of the disorder, around the value $r^\ast$ of the resetting rate. We obtain the susceptibility of the optimal resetting rate to disorder in closed form, and find it to be positive.