论文标题
轨道化学中轨道纠缠和相关性的概念
Concept of orbital entanglement and correlation in quantum chemistry
论文作者
论文摘要
量子化学的最新发展已建立了轨道之间的量子互信息,作为电子结构的主要描述。这已经促进了数值方法的显着改善,并可能导致化学键合理论更全面的基础。在这一有希望的发展的基础上,我们的工作通过将物理相关性及其将其分离成经典和量子部分作为电子结构的独特量化符,从而提供了对量子信息理论概念的精致讨论。特别是,我们成功地量化了纠缠。有趣的是,我们对不同分子的结果表明,轨道之间的总相关性主要是经典的,这引发了有关化学键合纠缠的一般意义的问题。我们的工作还表明,实施迄今为止尚未在量子化学中考虑的基本粒子编号超选择规则,它消除了先前看到的相关性和纠缠的主要部分。在这方面,使用分子系统实现量子信息处理任务可能比预期更具挑战性。
A recent development in quantum chemistry has established the quantum mutual information between orbitals as a major descriptor of electronic structure. This has already facilitated remarkable improvements of numerical methods and may lead to a more comprehensive foundation for chemical bonding theory. Building on this promising development, our work provides a refined discussion of quantum information theoretical concepts by introducing the physical correlation and its separation into classical and quantum parts as distinctive quantifiers of electronic structure. In particular, we succeed in quantifying the entanglement. Intriguingly, our results for different molecules reveal that the total correlation between orbitals is mainly classical, raising questions about the general significance of entanglement in chemical bonding. Our work also shows that implementing the fundamental particle number superselection rule, so far not accounted for in quantum chemistry, removes a major part of correlation and entanglement previously seen. In that respect, realizing quantum information processing tasks with molecular systems might be more challenging than anticipated.