论文标题
任意维度典型黑洞的挠度角度和阴影行为
Deflection Angle and Shadow Behaviors of Quintessential Black Holes in arbitrary Dimensions
论文作者
论文摘要
以M理论/超弦启发模型的启发,我们研究了偏转角度和阴影几何形状的某些行为,具有较高尺寸的典型典型黑洞,与两个深色能量(de)状态参数相关,为ω= - \ \ frac {1}} {1} {3} {3} {3} {3} {3} {3} {3} {3} {3} {3} = - \ \ \ freac frac {2} {2}} {2}} {3}。具体而言,我们在此类背景下得出光子的测量方程。多亏了与光学指标相对应的高斯河网定理,我们计算了所谓的弱限值近似值中偏转角的领先术语。之后,我们检查DE的效果和时空维度D对计算的光学量。通过场强度C和状态参数ω引入DE,我们发现阴影大小和挠度角通过增加场强度c的值而增加。但是,我们观察到,高尺寸降低了表现出相似行为的ω模型的这种数量。然后,我们通过讨论相关行为来考虑黑洞电荷对这些光学量的影响。本研究恢复了在普通的四个维度模型中出现的某些已知结果。
Motivated by M-theory/superstring inspired models, we investigate certain behaviors of the deflection angle and the shadow geometrical shapes of higher dimensional quintessential black holes associated with two values of the dark energy (DE) state parameter, being ω=-\frac{1}{3} and ω=-\frac{2}{3}. Concretely, we derive the geodesic equation of photons on such backgrounds. Thanks to the Gauss-Bonnet theorem corresponding to the optical metric, we compute the leading terms of the deflection angle in the so-called weak-limit approximation. After that, we inspect the effect of DE and the space-time dimension d on the calculated optical quantities. Introducing DE via the field intensity c and the state parameter ω, we find that the shadow size and the deflection angle increase by increasing values of the field intensity c. However, we observe that the high dimensions decrease such quantities for ω-models exhibiting similar behaviors. Then, we consider the effect of the black hole charge, on these optical quantities, by discussing the associated behaviors. The present investigation recovers certain known results appearing in ordinary four dimensional models.