论文标题
海森伯格广泛的顶点操作员代数在riemann表面
The Heisenberg Generalized Vertex Operator Algebra on a Riemann Surface
论文作者
论文摘要
我们计算了海森伯格(Heisenberg Intertwiner)在Schottky均匀化中的$ g $ riemann表面上的跨越顶点操作员代数的分区和相关性生成函数。这些以第一,第二和第三种的差异形式,质量形式和周期矩阵表示,并使用Macmahon Master定理的概括通过组合方法来计算。
We compute the partition and correlation generating functions for the Heisenberg intertwiner generalized vertex operator algebra on a genus $g$ Riemann surface in the Schottky uniformization. These are expressed in terms of differential forms of the first, second and third kind, the prime form and the period matrix and are computed by combinatorial methods using a generalization of the MacMahon Master Theorem.