论文标题
使用Protectiii多中心临床试验中的CT数据对2D图像分割算法的比较研究
A comparative study of 2D image segmentation algorithms for traumatic brain lesions using CT data from the ProTECTIII multicenter clinical trial
论文作者
论文摘要
临床医生和机器学习研究人员的自动分割对医学成像的自动分割概念。分割的目的是提高可视化的效率和简单性,并在医学图像中提高感兴趣区域的量化。图像分割是一项艰巨的任务,因为图像中的多参数异质性,这一障碍在自动化自动化脑部病变的努力中尤其具有挑战性。在这项研究中,我们已经尝试了多种可用的深度学习结构,以分割中度至重度脑损伤(TBI)后发现的不同表型出血性病变。其中包括:掌内出血(IPH),硬膜下血肿(SDH),硬膜外血肿(EDH)和创伤性挫伤。我们能够使用具有焦点Tversky损耗函数的UNET ++ 2D体系结构实现0.94的最佳骰子系数得分,使用UNET 2D使用UNET 2D在0.85中增加具有二进制跨核渗透性损失函数(IPH)情况。此外,使用相同的设置,我们能够分别在轴向出血和创伤性挫伤的情况下达到骰子系数得分为0.90和0.86。
Automated segmentation of medical imaging is of broad interest to clinicians and machine learning researchers alike. The goal of segmentation is to increase efficiency and simplicity of visualization and quantification of regions of interest within a medical image. Image segmentation is a difficult task because of multiparametric heterogeneity within the images, an obstacle that has proven especially challenging in efforts to automate the segmentation of brain lesions from non-contrast head computed tomography (CT). In this research, we have experimented with multiple available deep learning architectures to segment different phenotypes of hemorrhagic lesions found after moderate to severe traumatic brain injury (TBI). These include: intraparenchymal hemorrhage (IPH), subdural hematoma (SDH), epidural hematoma (EDH), and traumatic contusions. We were able to achieve an optimal Dice Coefficient1 score of 0.94 using UNet++ 2D Architecture with Focal Tversky Loss Function, an increase from 0.85 using UNet 2D with Binary Cross-Entropy Loss Function in intraparenchymal hemorrhage (IPH) cases. Furthermore, using the same setting, we were able to achieve the Dice Coefficient score of 0.90 and 0.86 in cases of Extra-Axial bleeds and Traumatic contusions, respectively.