论文标题
多视图的深度功能,用于鲁棒的面部亲属关系验证
Multi-view Deep Features for Robust Facial Kinship Verification
论文作者
论文摘要
来自面部图像的自动亲属验证是机器学习社区中的一个新兴研究主题。在本文中,我们提出了一个基于多视图深度特征的有效面部特征提取模型。因此,我们使用八个特征层(每种VGG-F,VGG-M,VGG-S和VGG-FACE模型的FC6和FC7层)使用了四个预训练的深度学习模型,以训练基于类的基于多线性侧信息的歧视分析在类协方差归一化(MSIDA+WCCN)方法中。此外,我们表明,基于WCCN方法集成的公制学习方法如何改善简单的得分余弦相似性(SSC)方法。我们指的是,我们在RFIW'20竞争中使用了SSC方法,使用了八个深度功能串联。因此,WCCN在公制学习方法中的整合降低了深度特征权重引入的类内变化效应。我们使用四个亲子关系(父子,父亲,父亲,母女和母女)评估了两个亲属基准的提议方法。因此,提出的MSIDA+WCCN方法分别在Kinfacew-I和KinfaceW-II数据库中以12.80%和14.65%的速度提高了SSC方法。获得的结果与某些现代方法(包括依赖深度学习的方法)进行了积极比较。
Automatic kinship verification from facial images is an emerging research topic in machine learning community. In this paper, we proposed an effective facial features extraction model based on multi-view deep features. Thus, we used four pre-trained deep learning models using eight features layers (FC6 and FC7 layers of each VGG-F, VGG-M, VGG-S and VGG-Face models) to train the proposed Multilinear Side-Information based Discriminant Analysis integrating Within Class Covariance Normalization (MSIDA+WCCN) method. Furthermore, we show that how can metric learning methods based on WCCN method integration improves the Simple Scoring Cosine similarity (SSC) method. We refer that we used the SSC method in RFIW'20 competition using the eight deep features concatenation. Thus, the integration of WCCN in the metric learning methods decreases the intra-class variations effect introduced by the deep features weights. We evaluate our proposed method on two kinship benchmarks namely KinFaceW-I and KinFaceW-II databases using four Parent-Child relations (Father-Son, Father-Daughter, Mother-Son and Mother-Daughter). Thus, the proposed MSIDA+WCCN method improves the SSC method with 12.80% and 14.65% on KinFaceW-I and KinFaceW-II databases, respectively. The results obtained are positively compared with some modern methods, including those that rely on deep learning.