论文标题

基于纵向修改治疗政策的非参数因果关系

Non-parametric causal effects based on longitudinal modified treatment policies

论文作者

Díaz, Iván, Williams, Nicholas, Hoffman, Katherine L., Schenck, Edward J.

论文摘要

大多数因果推理方法都考虑在确定性设定治疗的干预措施下进行反事实变量。通过连续或多价的治疗或暴露,这种反事实可能几乎没有真正的兴趣,因为无法实施可行的干预措施。此外,鉴定所必需的阳性假设的违规行为会因连续和多评估的处理和确定性干预而加剧。在本文中,我们提出纵向修改治疗策略(LMTPS)作为非参数替代方案。 LMTP可以设计为保证阳性,并与直接实用相关性的产生效果,并通过对线性回归调整的常规用户熟悉的解释。我们研究LMTP参数的鉴定,统计估计的研究特性,例如有效影响函数,并提出了四个不同的估计量。我们的两个估计量是有效的,一个估计值是依次稳健的,因为在每个时间点上,结果回归或治疗机制始终如一地估计,它是一致的。我们进行了一项模拟研究来说明估计量的特性,并介绍了我们激励对重症监护病房(ICU)患者低氧血症和死亡率的研究的结果。实施我们方法的软件以开源\ texttt {r} package \ texttt {lmtp}的形式提供,可在github上免费获得(\ url {https://github.com/nt-williams/lmtp})。

Most causal inference methods consider counterfactual variables under interventions that set the treatment deterministically. With continuous or multi-valued treatments or exposures, such counterfactuals may be of little practical interest because no feasible intervention can be implemented that would bring them about. Furthermore, violations to the positivity assumption, necessary for identification, are exacerbated with continuous and multi-valued treatments and deterministic interventions. In this paper we propose longitudinal modified treatment policies (LMTPs) as a non-parametric alternative. LMTPs can be designed to guarantee positivity, and yield effects of immediate practical relevance with an interpretation that is familiar to regular users of linear regression adjustment. We study the identification of the LMTP parameter, study properties of the statistical estimand such as the efficient influence function, and propose four different estimators. Two of our estimators are efficient, and one is sequentially doubly robust in the sense that it is consistent if, for each time point, either an outcome regression or a treatment mechanism is consistently estimated. We perform a simulation study to illustrate the properties of the estimators, and present the results of our motivating study on hypoxemia and mortality in Intensive Care Unit (ICU) patients. Software implementing our methods is provided in the form of the open source \texttt{R} package \texttt{lmtp} freely available on GitHub (\url{https://github.com/nt-williams/lmtp}).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源