论文标题
元学习随着贝叶斯的风险最小化
Meta Learning as Bayes Risk Minimization
论文作者
论文摘要
Meta-Learning是一个使用一组相互关联的任务的方法家族,可以学习一个可以从可能小的上下文数据集中学习新的查询任务的模型。在这项研究中,我们使用概率框架将两个任务相关的任务与梅塔学习问题进行正式含义,并将其重新定义为贝叶斯风险最小化问题(BRM)。在我们的公式中,BRM最佳解决方案是由从上下文数据集中根据特定任务的潜在变量的后验分布计算出的预测分布给出的,这证明了神经过程的理念是合理的。但是,神经过程中的后验分布违反了后验分布随上下文数据集的变化方式。为了解决这个问题,我们为后验分布提供了一种新型的高斯近似,该近似概括了线性高斯模型的后验。与神经过程不同,我们的后验分布的近似收敛于最大似然估计,其速率与真实后验分布相同。我们还展示了我们在基准数据集上方法的竞争力。
Meta-Learning is a family of methods that use a set of interrelated tasks to learn a model that can quickly learn a new query task from a possibly small contextual dataset. In this study, we use a probabilistic framework to formalize what it means for two tasks to be related and reframe the meta-learning problem into the problem of Bayesian risk minimization (BRM). In our formulation, the BRM optimal solution is given by the predictive distribution computed from the posterior distribution of the task-specific latent variable conditioned on the contextual dataset, and this justifies the philosophy of Neural Process. However, the posterior distribution in Neural Process violates the way the posterior distribution changes with the contextual dataset. To address this problem, we present a novel Gaussian approximation for the posterior distribution that generalizes the posterior of the linear Gaussian model. Unlike that of the Neural Process, our approximation of the posterior distributions converges to the maximum likelihood estimate with the same rate as the true posterior distribution. We also demonstrate the competitiveness of our approach on benchmark datasets.