论文标题

$ \ mathcal {h}^2 $ -matrix近似值的无关内核自适应构造

Kernel-independent adaptive construction of $\mathcal{H}^2$-matrix approximations

论文作者

Bauer, M., Bebendorf, M., Feist, B.

论文摘要

提出了一种非本地运算符的$ \ Mathcal {H}^2 $ -MATRIX近似值的内核构造方法。特别注意嵌套基地的自适应结构。作为综上的结果,提出了自适应交叉近似〜(ACA)的新误差估计,这对ACA的枢纽策略具有影响。

A method for the kernel-independent construction of $\mathcal{H}^2$-matrix approximations to non-local operators is proposed. Special attention is paid to the adaptive construction of nested bases. As a side result, new error estimates for adaptive cross approximation~(ACA) are presented which have implications on the pivoting strategy of ACA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源