论文标题
$ \ mathcal {h}^2 $ -matrix近似值的无关内核自适应构造
Kernel-independent adaptive construction of $\mathcal{H}^2$-matrix approximations
论文作者
论文摘要
提出了一种非本地运算符的$ \ Mathcal {H}^2 $ -MATRIX近似值的内核构造方法。特别注意嵌套基地的自适应结构。作为综上的结果,提出了自适应交叉近似〜(ACA)的新误差估计,这对ACA的枢纽策略具有影响。
A method for the kernel-independent construction of $\mathcal{H}^2$-matrix approximations to non-local operators is proposed. Special attention is paid to the adaptive construction of nested bases. As a side result, new error estimates for adaptive cross approximation~(ACA) are presented which have implications on the pivoting strategy of ACA.