论文标题

关于扩散过程的子几何达丝

On Sub-Geometric Ergodicity of Diffusion Processes

论文作者

Lazić, Petra, Sandrić, Nikola

论文摘要

在本文中,我们讨论了通过ITô随机微分方程给出的扩散过程的刻薄性。我们确定有关相对于总变异距离的相应半群的次几何成型的条件。我们还证明了在一类瓦斯坦的距离下,半几何的合同性和成真。最后,我们讨论了两类Markov过程的子几何成绩。

In this article, we discuss ergodicity properties of a diffusion process given through an Itô stochastic differential equation. We identify conditions on the drift and diffusion coefficients which result in sub-geometric ergodicity of the corresponding semigroup with respect to the total variation distance. We also prove sub-geometric contractivity and ergodicity of the semigroup under a class of Wasserstein distances. Finally, we discuss sub-geometric ergodicity of two classes of Markov processes with jumps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源