论文标题

在模块化贝叶斯模型中推断的随机近似剪切算法

Stochastic Approximation Cut Algorithm for Inference in Modularized Bayesian Models

论文作者

Liu, Yang, Goudie, Robert J. B.

论文摘要

贝叶斯建模使我们能够适应复杂的数据形式并进行全面的推断,但是对模型的部分错误指定的影响是一个问题。在这种情况下,一种方法是使用剪切模型对模型进行模块化,并防止可疑模块的反馈。观察数据后,这将导致通常没有闭合形式的切割分布。先前的研究提出了从该分布中采样的算法,但是这些算法尚不清楚理论收敛性。为了解决这个问题,我们提出了一种称为随机近似切割算法(SACUT)的新算法。该算法分为两个平行链。主链针对切割分布的近似值;辅助链用于形成主链的自适应提案分布。我们证明了由提出的算法绘制的样品的收敛性,并提出了确切的限制。尽管SACUT有偏见,但由于主链并未针对精确的切割分布,我们证明可以通过增加用户选择的调谐参数来几何地减少这种偏差。此外,SACUT可以轻松地采用并行计算,从而大大减少了计算时间。

Bayesian modelling enables us to accommodate complex forms of data and make a comprehensive inference, but the effect of partial misspecification of the model is a concern. One approach in this setting is to modularize the model, and prevent feedback from suspect modules, using a cut model. After observing data, this leads to the cut distribution which normally does not have a closed-form. Previous studies have proposed algorithms to sample from this distribution, but these algorithms have unclear theoretical convergence properties. To address this, we propose a new algorithm called the Stochastic Approximation Cut algorithm (SACut) as an alternative. The algorithm is divided into two parallel chains. The main chain targets an approximation to the cut distribution; the auxiliary chain is used to form an adaptive proposal distribution for the main chain. We prove convergence of the samples drawn by the proposed algorithm and present the exact limit. Although SACut is biased, since the main chain does not target the exact cut distribution, we prove this bias can be reduced geometrically by increasing a user-chosen tuning parameter. In addition, parallel computing can be easily adopted for SACut, which greatly reduces computation time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源