论文标题

从社会经济数据中解释电动汽车的缓慢充电基础设施的能源消耗的分布

Explaining the distribution of energy consumption at slow charging infrastructure for electric vehicles from socio-economic data

论文作者

Straka, Milan, Carvalho, Rui, van der Poel, Gijs, Buzna, Ľuboš

论文摘要

在这里,我们开发了一种以数据为中心的方法,可以分析围绕缓慢充电基础设施的环境的哪些活动,功能和特征影响在缓慢充电基础设施下消耗的电力的分布。为了获得基本的见解,我们分析了能源消耗的概率分布及其与表征充电事件的指标的关系。我们收集了地理空间数据集并利用统计方法进行数据预处理,我们准备了对充电基础架构运行的空间上下文进行建模的功能。为了提高结果的统计可靠性,我们将Bootstrap方法与LASSO方法一起应用了,该方法将回归与可变选择能力相结合。我们评估所选回归系数的统计分布。我们确定了与能源消耗相关的最具影响力的特征,表明充电基础设施的空间环境会影响其利用模式。其中许多特征与居民的经济繁荣有关。将方法应用于特定类别的基础架构,可以区分选定的功能,例如通过使用的推出策略。总体而言,本文证明了统计方法在能源数据中的应用,并提供了有关在开发模型以告知基础设施部署和电力电网计划时可能利用能源消耗的因素的见解。

Here, we develop a data-centric approach enabling to analyse which activities, function, and characteristics of the environment surrounding the slow charging infrastructure impact the distribution of the electricity consumed at slow charging infrastructure. To gain a basic insight, we analysed the probabilistic distribution of energy consumption and its relation to indicators characterizing charging events. We collected geospatial datasets and utilizing statistical methods for data pre-processing, we prepared features modelling the spatial context in which the charging infrastructure operates. To enhance the statistical reliability of results, we applied the bootstrap method together with the Lasso method that combines regression with variable selection ability. We evaluate the statistical distributions of the selected regression coefficients. We identified the most influential features correlated with energy consumption, indicating that the spatial context of the charging infrastructure affects its utilization pattern. Many of these features are related to the economic prosperity of residents. Application of the methodology to a specific class of charging infrastructure enables the differentiation of selected features, e.g. by the used rollout strategy. Overall, the paper demonstrates the application of statistical methodologies to energy data and provides insights on factors potentially shaping the energy consumption that could be utilized when developing models to inform charging infrastructure deployment and planning of power grids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源