论文标题
能量在梁驱动的等离子体Wakefield加速器中传播最小化
Energy spread minimization in a beam-driven plasma wakefield accelerator
论文作者
论文摘要
下一代基于等离子体的加速器可以将电子束推向千厘米距离内的Gigaelectronvolt能量。受驱动器脉冲激发的等离子体产生了大型电场,可以有效地加速尾随的证人一堆,从而使实验室规模应用的实现范围从高能量船员到超大的光源。到目前为止,几项实验表明了显着的加速度,但是所得的光束质量,尤其是能量扩散,仍然远离最先进的传统加速器。在这里,我们显示了一个横梁驱动的等离子体加速度实验的结果,在该实验中,我们使用电子束作为驱动器,然后是超短缺的证人。该实验首次证明了一种创新的方法,可以实现约0.1%的加速见证人的超低能量传播。这是比迄今为止获得的数量级。结果可能会导致对等离子体加速过程的优化及其在即将出版的紧凑型计算机中的实现,以实现以用户为导向的应用程序。
Next-generation plasma-based accelerators can push electron bunches to gigaelectronvolt energies within centimetre distances. The plasma, excited by a driver pulse, generates large electric fields that can efficiently accelerate a trailing witness bunch making possible the realization of laboratory-scale applications ranging from high-energy colliders to ultra-bright light sources. So far several experiments have demonstrated a significant acceleration but the resulting beam quality, especially the energy spread, is still far from state of the art conventional accelerators. Here we show the results of a beam-driven plasma acceleration experiment where we used an electron bunch as a driver followed by an ultra-short witness. The experiment demonstrates, for the first time, an innovative method to achieve an ultra-low energy spread of the accelerated witness of about 0.1%. This is an order of magnitude smaller than what has been obtained so far. The result can lead to a major breakthrough toward the optimization of the plasma acceleration process and its implementation in forthcoming compact machines for user-oriented applications.