论文标题
与物质源的Weyl可集成几何形状中的不均匀间隔
Inhomogeneous spacetimes in Weyl integrable geometry with matter source
论文作者
论文摘要
我们研究了具有物质来源的Weyl综合理论中不均匀的精确解的存在。特别是,我们考虑存在粉尘流体源的存在,而对于基础几何形状,我们假设属于寂静宇宙家族的线元素。我们明确地求解了场方程,并在Weyl Entignable理论中找到了Szekeres的空间。我们表明,只有各向同性家族才能描述包括LTB空位的不均匀解决方案。在确定过去和将来的吸引子的情况下,给出了场方程动力学的详细分析。有趣的是,卡斯纳的空间可以看作是重力模型的过去吸引子,而独特的未来吸引子描述了米尔恩宇宙与重力模型的行为相似的情况下,在一般相对论的情况下。
We investigate the existence of inhomogeneous exact solutions in Weyl Integrable theory with a matter source. In particular, we consider the existence of a dust fluid source while for the underlying geometry we assume a line element which belongs to the family of silent universes. We solve explicitly the field equations and we find the Szekeres spacetimes in Weyl Integrable theory. We show that only the isotropic family can describe inhomogeneous solutions where the LTB spacetimes are included. A detailed analysis of the dynamics of the field equations is given where the past and future attractors are determined. It is interesting that the Kasner spacetimes can be seen as past attractors for the gravitation models, while the unique future attractor describes the Milne universe similar with the behaviour of the gravitational model in the case of General Relativity.