论文标题
强大的多次停止 - 一种路径双重性方法
Robust Multiple Stopping -- A Pathwise Duality Approach
论文作者
论文摘要
我们开发了一种方法来解决理论和数值,一般最佳停止问题。我们的一般设置允许多次锻炼权,即最佳多重停止,以构成模型不确定性的强大评估,以及由多维跳跃式延伸驱动的一般奖励流程。我们的方法依赖于首先建立强大的Martingale双重表示的结果,以使多个停止问题满足吸引人的路线最优性(即几乎确定)属性。接下来,我们利用这些理论结果来发展上和下限,正如我们正式所显示的那样,不仅会渐近地收敛到真实的解决方案,还构成了真正的预限制上限和下限。我们在一些示例中说明了我们的方法的适用性,并分析了模型不确定性对最佳多个停止策略的影响。
We develop a method to solve, theoretically and numerically, general optimal stopping problems. Our general setting allows for multiple exercise rights, i.e., optimal multiple stopping, for a robust evaluation that accounts for model uncertainty, and for general reward processes driven by multi-dimensional jump-diffusions. Our approach relies on first establishing robust martingale dual representation results for the multiple stopping problem that satisfy appealing pathwise optimality (i.e., almost sure) properties. Next, we exploit these theoretical results to develop upper and lower bounds that, as we formally show, not only converge to the true solution asymptotically, but also constitute genuine pre-limiting upper and lower bounds. We illustrate the applicability of our approach in a few examples and analyze the impact of model uncertainty on optimal multiple stopping strategies.