论文标题

使用卷积神经网络模仿光谱倒置

Mimicking spectropolarimetric inversions using convolutional neural networks

论文作者

Milic, Ivan, Gafeira, Ricardo

论文摘要

解释太阳大气的光谱学观察结果比获取数据要长得多。这样做的最重要的原因是,用于从观察值推断物理量的模型拟合或“反转”非常慢,因为基础模型在数字上是要求的。我们旨在通过使用将输入极化光谱与输出物理参数相关联的神经网络来提高推论的速度。我们首先使用基于标准最小化的反转代码从相应的光谱中选择要解释的数据子集并从相应的光谱中推断出物理量。将这些结果作为整个数据集的可靠和代表,我们训练一个卷积神经网络,将输入极化光谱连接到输出物理参数(节点,在光谱偏置的背景下)。然后,我们将神经网络应用于以前从未见过的各种其他数据。作为检查,我们将参考倒置代码应用于看不见的数据,并比较两个反转之间的拟合质量和地图。神经网络推断出的物理参数与反转的结果表现出非常一致的一致性,并且以$ 10^5 $的时间获得的时间更少。此外,在正向模型中替换神经网络的结果,在推断和原始光谱之间显示出极好的一致性。我们这里提出的方法非常简单,非常简单,并且非常快。它只需要一个培训数据集,可以通过反转观察到的数据的代表性子集获得。应用这些(和类似的)机器学习技术将在光谱数据的常规解释中产生数量级加速度的顺序。

Interpreting spectropolarimetric observations of the solar atmosphere takes much longer than the acquiring the data. The most important reason for this is that the model fitting, or "inversion", used to infer physical quantities from the observations is extremely slow, because the underlying models are numerically demanding. We aim to improve the speed of the inference by using a neural network that relates input polarized spectra to the output physical parameters. We first select a subset of the data to be interpreted and infer physical quantities from corresponding spectra using a standard minimization-based inversion code. Taking these results as reliable and representative of the whole data set, we train a convolutional neural network to connect the input polarized spectra to the output physical parameters (nodes, in context of spectropolarimetric inversion). We then apply the neural network to the various other data, previously unseen to the network. As a check, we apply the referent inversion code to the unseen data and compare the fit quality and the maps of the inferred parameters between the two inversions. The physical parameters inferred by the neural network show excellent agreement with the results from the inversion, and are obtained in a factor of $10^5$ less time. Additionally, substituting the results of the neural network back in the forward model, shows excellent agreement between inferred and original spectra. The method we present here is very simple for implementation and extremely fast. It only requires a training data set, which can be obtained by inverting a representative subset of the observed data. Applying these (and similar) machine learning techniques will yield orders of magnitude acceleration in the routine interpretation of spectropolarimetric data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源