论文标题

使用量子图像传感器在黑暗中的图像分类

Image Classification in the Dark using Quanta Image Sensors

论文作者

Gnanasambandam, Abhiram, Chan, Stanley H.

论文摘要

最先进的图像分类器经过良好的图像训练和测试。这些图像通常由CMOS图像传感器捕获,每个像素至少具有数十个光子。但是,在光子通量较低时,在黑暗环境中,图像分类变得困难,因为测得的信号被噪声抑制。在本文中,我们使用Quanta图像传感器(QIS)提出了一种新的低光图像分类解决方案。 QIS是一种具有光子计数能力的新型图像传感器,而无需妥协像素大小和空间分辨率。在过去的十年中,许多研究表明QIS对低光成像的可行性,但尚未研究它们对图像分类的使用。本文通过提出学生教师学习计划来填补空白,该计划使我们能够对嘈杂的QIS原始数据进行分类。我们表明,通过学生教师的学习,我们能够在每个像素或更低的光子水平上实现图像分类。实验结果与现有溶液相比,验证了所提出的方法的有效性。

State-of-the-art image classifiers are trained and tested using well-illuminated images. These images are typically captured by CMOS image sensors with at least tens of photons per pixel. However, in dark environments when the photon flux is low, image classification becomes difficult because the measured signal is suppressed by noise. In this paper, we present a new low-light image classification solution using Quanta Image Sensors (QIS). QIS are a new type of image sensors that possess photon counting ability without compromising on pixel size and spatial resolution. Numerous studies over the past decade have demonstrated the feasibility of QIS for low-light imaging, but their usage for image classification has not been studied. This paper fills the gap by presenting a student-teacher learning scheme which allows us to classify the noisy QIS raw data. We show that with student-teacher learning, we are able to achieve image classification at a photon level of one photon per pixel or lower. Experimental results verify the effectiveness of the proposed method compared to existing solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源