论文标题
在可数基本的免费组上
On countable elementary free groups
论文作者
论文摘要
我们证明,如果一个可计数的组基本等同于非亚洲自由组,并且其所有阿伯利亚亚组都是循环的,那么该组是一组常规NTQ组链的结合(即双曲线塔)。
We prove that if a countable group is elementarily equivalent to a non-abelian free group and all of its abelian subgroups are cyclic, then the group is a union of a chain of regular NTQ groups (i.e., hyperbolic towers).