论文标题
张量网络检测异常
Anomaly Detection with Tensor Networks
论文作者
论文摘要
张量网络起源于凝结物理物理学,是高维张量的紧凑表示。在本文中,张量网络的能力在一级异常检测的特定任务上证明了。我们利用张量网络的内存和计算效率来学习在原始特征数量中的空间上的线性变换。我们的模型的线性性使我们能够通过惩罚该模型通过其Frobenius Norm来预测正态性的全球趋势来确保对培训实例的紧密合同 - 这对于大多数深度学习模型都是不可行的。尽管没有利用图像的局部性,但我们的方法在表格数据集上的表现优于表格数据集上的深层和经典算法,并在图像数据集上产生竞争结果。
Originating from condensed matter physics, tensor networks are compact representations of high-dimensional tensors. In this paper, the prowess of tensor networks is demonstrated on the particular task of one-class anomaly detection. We exploit the memory and computational efficiency of tensor networks to learn a linear transformation over a space with dimension exponential in the number of original features. The linearity of our model enables us to ensure a tight fit around training instances by penalizing the model's global tendency to a predict normality via its Frobenius norm---a task that is infeasible for most deep learning models. Our method outperforms deep and classical algorithms on tabular datasets and produces competitive results on image datasets, despite not exploiting the locality of images.