论文标题

将机器学习与基于物理的建模集成

Integrating Machine Learning with Physics-Based Modeling

论文作者

E, Weinan, Han, Jiequn, Zhang, Linfeng

论文摘要

机器学习是一种非常强大的工具,可以极大地提高我们进行科学研究的能力。但是,在这成为现实之前,需要解决许多问题。本文重点介绍了一个特定的广泛兴趣问题:我们如何将机器学习与基于物理的建模集成以开发新的可解释和真正可靠的物理模型?在介绍了一般准则之后,我们讨论了开发基于机器学习的物理模型的两个最重要的问题:施加物理约束并获得最佳数据集。我们还提供了一个简单而直观的解释,出于现代机器学习成功背后的根本原因,以及对将机器学习与基于物理的建模集成在一起所需的并发机器学习框架的介绍。动力学方程的分子动力学和力矩闭合被用作说明所讨论的主要问题的示例。我们以一般的讨论结尾,讨论这种整合将导致我们到达何处,以及在机器学习成功整合到科学建模之后的新领域。

Machine learning is poised as a very powerful tool that can drastically improve our ability to carry out scientific research. However, many issues need to be addressed before this becomes a reality. This article focuses on one particular issue of broad interest: How can we integrate machine learning with physics-based modeling to develop new interpretable and truly reliable physical models? After introducing the general guidelines, we discuss the two most important issues for developing machine learning-based physical models: Imposing physical constraints and obtaining optimal datasets. We also provide a simple and intuitive explanation for the fundamental reasons behind the success of modern machine learning, as well as an introduction to the concurrent machine learning framework needed for integrating machine learning with physics-based modeling. Molecular dynamics and moment closure of kinetic equations are used as examples to illustrate the main issues discussed. We end with a general discussion on where this integration will lead us to, and where the new frontier will be after machine learning is successfully integrated into scientific modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源