论文标题

先验知识在精确的多模式预测中的重要性

The Importance of Prior Knowledge in Precise Multimodal Prediction

论文作者

Casas, Sergio, Gulino, Cole, Suo, Simon, Urtasun, Raquel

论文摘要

道路有明确的几何形状,拓扑和交通规则。尽管这已被广泛利用在运动计划方法中,以制作遵守法律的动作,但很少有工作专门用于利用这些先验的感知和运动预测方法。在本文中,我们建议将这些结构化的先验纳入损失函数。与施加严格的约束相反,这种方法使模型可以在现实世界中发生不合规的操作。安全运动计划是最终目标,因此,对场景的未来发展的概率表征是选择最低预期成本的计划的关键。为了实现这一目标,我们设计了一个框架,该框架利用加强框架将与概率模型的样本轨迹相比,从而优化了整个分布。我们证明了方法对包含复杂道路拓扑和多代理相互作用的现实世界自动驾驶数据集的有效性。我们的运动预测不仅表现出更好的精度和地图理解,而且最重要的是,我们的自动驾驶工具采取了更安全的运动计划。我们强调,尽管这项评估很重要,但以前的感知和运动预测工作经常被忽视。

Roads have well defined geometries, topologies, and traffic rules. While this has been widely exploited in motion planning methods to produce maneuvers that obey the law, little work has been devoted to utilize these priors in perception and motion forecasting methods. In this paper we propose to incorporate these structured priors as a loss function. In contrast to imposing hard constraints, this approach allows the model to handle non-compliant maneuvers when those happen in the real world. Safe motion planning is the end goal, and thus a probabilistic characterization of the possible future developments of the scene is key to choose the plan with the lowest expected cost. Towards this goal, we design a framework that leverages REINFORCE to incorporate non-differentiable priors over sample trajectories from a probabilistic model, thus optimizing the whole distribution. We demonstrate the effectiveness of our approach on real-world self-driving datasets containing complex road topologies and multi-agent interactions. Our motion forecasts not only exhibit better precision and map understanding, but most importantly result in safer motion plans taken by our self-driving vehicle. We emphasize that despite the importance of this evaluation, it has been often overlooked by previous perception and motion forecasting works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源