论文标题
旋转和轨道角度的特性
Properties of Spin and Orbital Angular Momenta of Light
论文作者
论文摘要
本文分析了量子机械框架中光和轨道角动量的代数和物理特性。在量子机械意义上这些不是角动量的事实的后果是在数学细节中弄清楚的。事实证明,角动量的自旋部分具有连续的特征值。特别注意近期限制,以及Laguerre的定义 - 光子的Gaussian模式以及经典的光场充分考虑了极化自由度。
This paper analyzes the algebraic and physical properties of the spin and orbital angular momenta of light in the quantum mechanical framework. The consequences of the fact that these are not angular momenta in the quantum mechanical sense are worked out in mathematical detail. It turns out that the spin part of the angular momentum has continuous eigenvalues. Particular attention is given to the paraxial limit, and to the definition of Laguerre--Gaussian modes for photons as well as classical light fields taking full account of the polarization degree of freedom.