论文标题

从二进制测量中使用基数约束最小二乘的强大解码

Robust Decoding from Binary Measurements with Cardinality Constraint Least Squares

论文作者

Ding, Zhao, Huang, Junjun, Jiao, Yuling, Lu, Xiliang, Yang, Zhijian

论文摘要

1位压缩抽样的主要目标是从$ m $二进制测量值中解码具有稀疏级别$ s $的$ n $尺寸信号。由于存在非线性,噪音和符号翻转,这是一项具有挑战性的任务。在本文中,提出了基数约束最少正方形作为所需解码器。我们证明,只要$ m \ geq \ geq \ geq \ mathcal {o}(s \ log n)$,提议的解码器就达到了最小的解码器。在计算上,我们利用广义的牛顿算法(GNA)来解决基数约束最小化问题,而在每次迭代时求解最小二乘问题的成本很小。我们证明,概率很高,是GNA输出与基础目标衰减之间的估计误差的$ \ ell _ {\ infty} $ narm narm of $ \ sqrt {\ sqrt {\ frac {\ frac {\ log n}} {m}}} $ nog Mathcal pogalcal cancalcal {此外,只要可以检测到目标信号,就可以在$ \ mathcal {o}(\ log s)$ step中以很高的概率恢复基础支持。提出了广泛的数值模拟和与最新方法的比较,以说明我们提出的解码器的鲁棒性和GNA算法的效率。

The main goal of 1-bit compressive sampling is to decode $n$ dimensional signals with sparsity level $s$ from $m$ binary measurements. This is a challenging task due to the presence of nonlinearity, noises and sign flips. In this paper, the cardinality constraint least square is proposed as a desired decoder. We prove that, up to a constant $c$, with high probability, the proposed decoder achieves a minimax estimation error as long as $m \geq \mathcal{O}( s\log n)$. Computationally, we utilize a generalized Newton algorithm (GNA) to solve the cardinality constraint minimization problem with the cost of solving a least squares problem with small size at each iteration. We prove that, with high probability, the $\ell_{\infty}$ norm of the estimation error between the output of GNA and the underlying target decays to $\mathcal{O}(\sqrt{\frac{\log n }{m}}) $ after at most $\mathcal{O}(\log s)$ iterations. Moreover, the underlying support can be recovered with high probability in $\mathcal{O}(\log s)$ steps provided that the target signal is detectable. Extensive numerical simulations and comparisons with state-of-the-art methods are presented to illustrate the robustness of our proposed decoder and the efficiency of the GNA algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源