论文标题

Rareplanes:合成数据进行飞行

RarePlanes: Synthetic Data Takes Flight

论文作者

Shermeyer, Jacob, Hossler, Thomas, Van Etten, Adam, Hogan, Daniel, Lewis, Ryan, Kim, Daeil

论文摘要

Rareplanes是一个独特的开源机器学习数据集,它既包含真实的和合成生成的卫星图像。 Rareplanes数据集专门研究合成数据的价值,以帮助计算机视觉算法自动检测飞机及其属性在卫星图像中的能力。尽管存在其他合成/真实组合数据集,但RarePlanes是最大的开放式空缺分辨率数据集,该数据集旨在从间接费用的角度来测试合成数据的值。先前的研究表明,合成数据可以减少所需的实际训练数据的数量,并有可能提高计算机视觉域中许多任务的性能。数据集的实际部分由253个Maxar WorldView-3卫星场景组成,涵盖了112个位置和2,142 km^2,带有14,700架手工注销的飞机。随附的合成数据集通过AI.Reverie的仿真平台生成,并具有5​​0,000个合成卫星图像,模拟总面积为9331.2 km^2,并使用〜630,000架飞机注释。真实和合成生成的飞机都具有10种精细的谷物属性,包括:飞机长度,翼展,机翼形状,机翼位置,翼展类别,推进,发动机数量,垂直稳定器的数量,canards的存在和飞机角色。最后,我们进行了广泛的实验,以评估真实和合成数据集并比较性能。通过这样做,我们显示了合成数据的价值,即从高架角度检测和对飞机进行分类的任务。

RarePlanes is a unique open-source machine learning dataset that incorporates both real and synthetically generated satellite imagery. The RarePlanes dataset specifically focuses on the value of synthetic data to aid computer vision algorithms in their ability to automatically detect aircraft and their attributes in satellite imagery. Although other synthetic/real combination datasets exist, RarePlanes is the largest openly-available very-high resolution dataset built to test the value of synthetic data from an overhead perspective. Previous research has shown that synthetic data can reduce the amount of real training data needed and potentially improve performance for many tasks in the computer vision domain. The real portion of the dataset consists of 253 Maxar WorldView-3 satellite scenes spanning 112 locations and 2,142 km^2 with 14,700 hand-annotated aircraft. The accompanying synthetic dataset is generated via AI.Reverie's simulation platform and features 50,000 synthetic satellite images simulating a total area of 9331.2 km^2 with ~630,000 aircraft annotations. Both the real and synthetically generated aircraft feature 10 fine grain attributes including: aircraft length, wingspan, wing-shape, wing-position, wingspan class, propulsion, number of engines, number of vertical-stabilizers, presence of canards, and aircraft role. Finally, we conduct extensive experiments to evaluate the real and synthetic datasets and compare performances. By doing so, we show the value of synthetic data for the task of detecting and classifying aircraft from an overhead perspective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源