论文标题

计数卡:利用差异和数据分布以进行健壮计算中的内存

Counting Cards: Exploiting Variance and Data Distributions for Robust Compute In-Memory

论文作者

Crafton, Brian, Spetalnick, Samuel, Raychowdhury, Arijit

论文摘要

计算内存中(CIM)是一种有前途的技术,可将数据传输,大多数数据密集型应用的主要性能瓶颈和能源成本最小化。这已经发现在加速神经网络以用于机器学习应用程序中广泛采用。利用具有新兴非易失性记忆(ENKM)的横梁体系结构,例如密集的电阻随机访问记忆(RRAM)或相变的随机访问记忆(PCRAM),可以实现各种形式的神经网络,以极大地降低功率并增加芯片内存能力。但是,计算内存在电路和设备级别上都面临着自己的局限性。在这项工作中,我们探讨了设备变化和外围电路设计约束的影响。此外,我们提出了一种基于设备方差和神经网络权重分布的新算法,以提高基于计算内存的设计的性能和准确性。我们证明了低差异和高方差ENVM的功率提高27%,性能提高了23%,同时满足了目标误差容忍度的可编程阈值,这取决于应用程序。

Compute in-memory (CIM) is a promising technique that minimizes data transport, the primary performance bottleneck and energy cost of most data intensive applications. This has found wide-spread adoption in accelerating neural networks for machine learning applications. Utilizing a crossbar architecture with emerging non-volatile memories (eNVM) such as dense resistive random access memory (RRAM) or phase change random access memory (PCRAM), various forms of neural networks can be implemented to greatly reduce power and increase on chip memory capacity. However, compute in-memory faces its own limitations at both the circuit and the device levels. In this work, we explore the impact of device variation and peripheral circuit design constraints. Furthermore, we propose a new algorithm based on device variance and neural network weight distributions to increase both performance and accuracy for compute-in memory based designs. We demonstrate a 27% power improvement and 23% performance improvement for low and high variance eNVM, while satisfying a programmable threshold for a target error tolerance, which depends on the application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源