论文标题

通过hermite插值的多项式近似的确切次数估计值

Exact pointwise estimates for polynomial approximation with Hermite interpolation

论文作者

Kopotun, Kirill A., Leviatan, Dany, Shevchuk, Igor A.

论文摘要

我们通过有限的多项式(Hermite)插值条件以有限的多项式建立了最佳的点(达到恒定倍数)估计值,以在有限的间隔内建立近似值,并表明这些估计值无法改善。 In particular, we show that {\bf any} algebraic polynomial of degree $n$ approximating a function $f\in C^r(I)$, $I=[-1,1]$, at the classical pointwise rate $ρ_n^r(x) ω_k(f^{(r)}, ρ_n(x))$, where $ρ_n(x)= n^{ - 1} \ sqrt {1-x^2}+n^{ - 2} $,以及(Hermite)interpolating $ f $及其派生词及其衍生物及其派生$ r $在i $中的点$ x_0 \,在i $中是$ x_0 \,具有最佳的点率(同步)$ $ $ $ $ $ $ $ $ $ $ f。 给出了几个申请。

We establish best possible pointwise (up to a constant multiple) estimates for approximation, on a finite interval, by polynomials that satisfy finitely many (Hermite) interpolation conditions, and show that these estimates cannot be improved. In particular, we show that {\bf any} algebraic polynomial of degree $n$ approximating a function $f\in C^r(I)$, $I=[-1,1]$, at the classical pointwise rate $ρ_n^r(x) ω_k(f^{(r)}, ρ_n(x))$, where $ρ_n(x)=n^{-1}\sqrt{1-x^2}+n^{-2}$, and (Hermite) interpolating $f$ and its derivatives up to the order $r$ at a point $x_0\in I$, has the best possible pointwise rate of (simultaneous) approximation of $f$ near $x_0$. Several applications are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源