论文标题

测试阴性设计下具有人口控制的可识别性和估计,目的是确定SARS-COV-2感染的风险和预防因素

Identifiability and estimation under the test-negative design with population controls with the goal of identifying risk and preventive factors for SARS-CoV-2 infection

论文作者

Schnitzer, Mireille E., Harel, Daphna, Ho, Vikki, Koushik, Anita, Merckx, Joanna

论文摘要

由于由SARS-COV-2病毒引起的迅速发展的共同发展,因此对行为与感染风险之间关系的快速研究至关重要。最近,提出了测试阴性设计旨在招募和调查参与者,这些参与者是有症状并接受SARS-COV-2感染测试的,目的是评估调查反应(包括行为和环境)之间的关联并在测试中测试呈阳性。还建议招募作为基准比较组的其他对照组,以评估特定于SARS-COV-2感染的风险因素。在这项研究中,我们考虑了一种替代设计,除种群对照外,还对所有个体(有症状和无症状)招募了该病毒。我们定义了与前瞻性风险因素分析相关的回归参数,并根据两个研究设计研究了其可识别性。我们回顾了典型的测试阴性设计中的前瞻性危险因素参数与仅招募有症状和经过测试的人的参数之间的差异。 使用丢失的数据定向无环图,我们提供条件和所需的数据收集,在该数据中,预期风险因素参数的可识别性是可能的,并比较替代研究设计和目标参数的益处和局限性。我们提出了一种新型的逆概率加权估计器,并通过仿真研究证明了该估计值的性能。

Due to the rapidly evolving COVID-19 pandemic caused by the SARS-CoV-2 virus, quick public health investigations of the relationships between behaviours and infection risk are essential. Recently the test-negative design was proposed to recruit and survey participants who are symptomatic and being tested for SARS-CoV-2 infection with the goal of evaluating associations between the survey responses (including behaviours and environment) and testing positive on the test. It was also proposed to recruit additional controls who are part of the general population as a baseline comparison group in order to evaluate risk factors specific to SARS-CoV-2 infection. In this study, we consider an alternative design where we recruit among all individuals, symptomatic and asymptomatic, being tested for the virus in addition to population controls. We define a regression parameter related to a prospective risk factor analysis and investigate its identifiability under the two study designs. We review the difference between the prospective risk factor parameter and the parameter targeted in the typical test-negative design where only symptomatic and tested people are recruited. Using missing data directed acyclic graphs we provide conditions and required data collection under which identifiability of the prospective risk factor parameter is possible and compare the benefits and limitations of the alternative study designs and target parameters. We propose a novel inverse probability weighting estimator and demonstrate the performance of this estimator through simulation study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源